
User Guide

Total Freedom 3.0
Plug-In Developer’s Guide

For Xenon Ultra 196X Series Only

Disclaimer
Honeywell International Inc. (“HII”) reserves the right to make changes in specifications and other information contained in
this document without prior notice, and the reader should in all cases consult HII to determine whether any such changes
have been made. HII makes no representation or warranties regarding the information provided in this publication.

HII shall not be liable for technical or editorial errors or omissions contained herein; nor for incidental or consequential
damages resulting from the furnishing, performance, or use of this material. HII disclaims all responsibility for the
selection and use of software and/or hardware to achieve intended results.
This document contains proprietary information that is protected by copyright. All rights are reserved. No part of this
document may be photocopied, reproduced, or translated into another language without the prior written consent of HII.

Copyright 2023 Honeywell Group of Companies. All rights reserved.

Web Address: sps.honeywell.com

Trademarks
MIPS is a trademark of MIPS Inc.
IBM is a registered trademark of IBM in the United States.

Microsoft® Windows® and the Windows logo are trademarks or registered trademarks of Microsoft Corporation.
Apple is a trademark of Apple Inc., registered in the U.S. and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.
Other product names or marks mentioned in this document may be trademarks or registered trademarks of other
companies and are the property of their respective owners.

Patents
For patent information, refer to www.hsmpats.com.

https://www.sps.honeywell.com
http://www.hsmpats.com

Total Freedom 3.0
TABLE OF CONTENTS
Customer Support ... vii
Technical Assistance .. vii

Chapter 1 - Contents and Environment ... 1
Package Contents .. 1

MIPS™ ELF Toolchain for Linux® PC.. 1
Plug-in Samples... 1
EZConfig for Scanning .. 1

System Requirements .. 1

Plug-in Development Environment.. 2
Installing MIPS Toolchain for Linux PC.. 2

Chapter 2 - Plug-In Development.. 3
Header Files.. 3

Plug-in Chain... 4
Build Bin Files for Every Plug-in.. 4
Create a Plug-in Chain Configuration File .. 4
Create MOCF File that Contains Multiple Plug-ins... 6

Define Plug-in Information .. 6

Declare Plug-in ... 6

Export Symbols for Other Plug-ins... 7

Define Plug-in Entry Function and Exit Function... 7

Makefile.. 9

Build Plug-in ... 10
 User Guide iii

Plug-in Configuration File ...11

Configurations of System Routines ...15

Memory and Storage for Plug-ins ..16
File Size of Plug-in..16
Stack Size ...17
Global Variables...17
Heap ...17

Create an MOCF file with Plug-ins ...17
Create an MOCF File that Contains a Single File...17
Create an MOCF File that Contains Multiple Files ..18
Add Custom Defaults File to Plug-in MOCF file ...18

Download Plug-in and Configuration File...18

Chapter 3 - Configuration File Samples .. 19
FormatPlugin_1 and FormatPlugin_2...19

Call the System Routine..20

Disable Calling the System Routine...21

System Routine at End of Plug-In Sequence ...22

Chapter 4 - Generate Menu barcodes .. 23
Normal ...23

Lock-Mode ...23

Chapter 5 - Format Plug-In API... 25
DataEdit...25

ProcessingBarcode ...27

CheckLicense ..28

Register APIs..29

Control the Scanner’s Beeper and LED ..31

Play Audio Files ..32

Chapter 6 - Decode Plug-In API .. 33
Logic of Calling Decode Plug-ins ...33
iv Total Freedom 3.0 User Guide

Decode Plug-in APIs ...33
Decode ...33
ProcessingBarcode...34
CheckLicense..34
CheckVersion ..34
Register APIs ...35

Chapter 7 - Offline Plug-In API..39
Logic of Calling Offline Plug-ins ...39

Offline Plug-in APIs...39
ProcessingEvent ..39
ProcessingBarcode...39
CheckLicense..40
CheckVersion ..40
Process Manifest Plug-in APIs...41
Register APIs ...41

Offline Timer ..43

Play Audio in Plug-in ..43

Chapter 8 - Diagnostics..45
Boot Mode to Disable Loading Plug-in...45

View Plug-in Configuration..46

Load Status of Plug-ins...47

Plug-in Relevant Menu Settings..47
Total Freedom 3.0 User Guide v

vi Total Freedom 3.0 User Guide

Customer Support

Technical Assistance
To search our knowledge base for a solution or to log in to the Technical Support
portal and report a problem, go to honeywell.com/PSStechnicalsupport.

For our latest contact information, see sps.honeywell.com.
Total Freedom 3.0 User Guide vii

https://www.honeywell.com/PSStechnicalsupport
https://www.sps.honeywell.com

viii Total Freedom 3.0 User Guide

CHAPTER

1

Total Freedom 3.0
CONTENTS AND ENVIRONMENT
Package Contents

MIPS™ ELF Toolchain for Linux® PC
The MIPS ELF cross-compiling toolchain package for an IBM-compatible Linux
PC.

Plug-in Samples
Folder containing sample plug-in development projects. The Sample folder is cre-
ated when you install the toolchain.

Note: Before downloading a plug-in to the scanner, you must first compile the plug-in on
an IBM-compatible Linux PC using the MIPS ELF Toolchain for Linux PC.

EZConfig for Scanning
Used to download and debug.

System Requirements
TotalFreedom GNU Toolchain is supported under the following system require-
ments:

• Processor: Minimum 2GHz

• Memory: Minimum 4 GB RAM

• Hard Drives: Minimum 50 GB free disk space

• Operating system: Utuntu 20.04 LTS 64-bit, may run on Windows® 10 64-bit +
VMware 16.1.2 or later
 User Guide 1

• Software dependencies: GNU Make 4.2.1 or later, Binutils 2.34 or later, gcc 9.4.0
or later

The Toolchain has not been tested on other operating systems besides those men-
tioned above.

Plug-in Development Environment

Installing MIPS Toolchain for Linux PC
1. Log into an IBM-compatible Linux PC.

2. Copy the tarball file: PluginToolbin_Linux.tar.bz2 in the package to your
development directory.

3. Untar the PluginToolbin_Linux.tar.bz2 file:
tar -xvf PluginToolbin_Linux.tar.bz2
2 Total Freedom 3.0 User Guide

CHAPTER

2

Total Freedom 3.0
PLUG-IN DEVELOPMENT
The plug-in is a relocatable ELF file. Total Freedom plug-ins are different than a
normal program running on a common operating system such as Windows and
Linux.

The plug-in has no main function but does have an initial function instead of the
main entry function.

The following function plug-in types can be defined: decode plug-ins, format plug-
ins, and offline plug-ins. Another special kind of helper plug-in provides functions
that can be called by other kinds of plug-ins. You can divide a plug-in into a func-
tional plug-in and helper plug-in(s), which allows the sharing and changing of
plug-in code and data in a modular fashion. (See 'Declare Plug-in" on page 6).

The installation package contains a format plug-in sample.

Header Files
Use standard C library functions to develop plug-ins. To use the standard C library
functions, include the standard C Library header files as you would when develop-
ing a standalone program. You also need Honeywell-defined header files to prop-
erly create plug-ins.

The following header files must be included:
#include <hsm_plugin/matrix_plugin.h>

The matrix_plugin.h header file contains the basic defines and data structures of
the plug-in. It also contains hon_resolved_symbols.h which includes a list of API’s
that are external symbols to be resolved by the scanner application during the
loading of the plugin. All plug-ins must include this header file.

#include <hsm_plugin/matrix_format_plugin.h>
The format plug-in header file contains relevant defines, data structures and API
declarations. You must include this header file when creating a format plug-in.

#include <hsm_plugin/matrix_beep_led.h>
This file contains the beeper and LED control system call defines and declarations.

#include <hsm_plugin/matrix_bar codeid.h>
 User Guide 3

This header file contains Honeywell Symbology ID definitions. You must include
this header file in plug-ins that work with the symbology IDs in the processed result
of the scanner.

#include <hsm_plugin/matrix_decode_plugin.h>
This header file contains the decode plug-in definitions, data structures and API
declarations.

#include <hsm_plugin/matrix_offline_plugin.h>
This header file contains the offline plug-in definitions, data structures and API
declarations.

Note: These header files are built into the toolchain. Include them as follows:
#include <hsm_plugin/HEADER_FILE.h>

Plug-in Chain
Honeywell scanners provide a chain function that allows you to compact multiple
plug-ins into a plug-in chain MOCF file. The data can be handled by this plug-in
chain. The output data from the previous plug-in is passed to the next plug-in as
the input data. The system routine should be a special plug-in and enabled by
default. Call plug-ins and the system routine in the order of their appearance in
the XML configuration file.

Build Bin Files for Every Plug-in
Build every plug-in used for the plug-in chain. The “*.plugin” files generated are
used to create a plug-in chain MOC file.

Create a Plug-in Chain Configuration File
The configuration file determines whether the barcode data should be sent to
plug-in routines or a system routine, and the order of the data. If there is no system
routine configuration entry in the XML file, by default the scanner will call the sys-
tem routine after all plug-ins have been called.
4 Total Freedom 3.0 User Guide

The following is an example of Plug-in Chain configuration file:
<?xml version="1.0"?>
<Format_PlugIn>

< FormatPlugIn_1>
<! Configurations for FormatPlugin_1!>
……
<entrydatastate> MODIFIED </entrydatastate>
<chainonexit> CHAINALWAYS </chainonexit>
……

</ FormatPlugIn_1>

<SystemRoutine>
<entrydatastate> MODIFIED </entrydatastate>
<chainonexit> CHAINIFSUCCESS </chainonexit>

</SystemRoutine>

< FormatPlugIn_2>
<! Configurations for FormatPlugin_2!>
……
<entrydatastate> ORIGINAL </entrydatastate>
<chainonexit> CHAINALWAYS </chainonexit>

</ FormatPlugIn_2>
……

</Format_PlugIn>
In this configuration, first call FormatPlugin_1. Then, if FormatPlugin_1 parsed the
input data successfully, the system routine is called and the output data from For-
matPlugin_1 is passed to the system routine as input. If FormatPlugin_1 failed to
parse the data, the system routine won’t be called. After the system routine is
treated, FormatPlugin_2 is treated according to its settings (whether it is called,
what kind of input data should be passed, etc.). All the plug-ins are treated by call-
ing the logic component in the firmware in the order of their appearance in the
XML file.
Total Freedom 3.0 User Guide 5

Create MOCF File that Contains Multiple Plug-ins
To create a plug-in chain MOCF file with multiple “*.plugin” files, create a MOCF file
with one of the files first and then use the AppendToMocf tool to add plug-in files
to the MOCF file.
AppendToMocf -m $(OutputFile) -t CompatProd -f
$(CompatProdRecFile) -d
AppendToMocf -m $(OutputFile) -t user -f FormatPlugIn_1.plugin
AppendToMocf -m $(OutputFile) -t user -f FormatPlugIn_2.plugin
AppendToMocf -m $(OutputFile) -t user -f ChainConf
AppendToMocf -m $(OutputFile) -t CustomDefaults -f
ChainCustomDefaults.txt

Define Plug-in Information
Certain information must be built into the plug-in for it to load it properly. Define
this information in the same source file with the plug-in declaration. (See 'Plug-in
Chain" on page 4):

#define PLUGIN_NAME SamplePlugin
#define COMPANY_NAME Plug-In Developer, Inc.
#define MAJOR_VERSION 5
#define MONOR_VERSION 3
#define BUILD_NUMBER 37
#define CERTIFICATE 102148
#define CERTIFICATE_TIME 2010/02/02 15:00:05
#define PLUGIN_GUID abcd1234
#define FILE_NAME Sample.plugin

Note that the value of the definition should be ASCII character strings without dou-
ble quotes. Spaces and commas are permitted in the string.

Declare Plug-in
The macro ‘DECLARE_PLUGIN(init_plugin, cleanup_plugin, plugin_type, MenuID)’
(defined in “matrix_plugin.h”) is used to declare the plug-in so the scanner can
obtain information from the plug-in when it is loaded:

DECLARE_PLUGIN(init_plugin, cleanup_plugin, HON_PLUGIN_FORMAT,
0x01);

The init_plugin and cleanup_plugin correspond to the addresses of the plug-in ini-
tial function and plug-in cleanup function respectively. (See 'Decode Plug-In
API" on page 33).
6 Total Freedom 3.0 User Guide

The plug-in class type is defined as:
enum HONPluginClassType
{

HON_PLUGIN_TYPE_UNKNOWN = 0,
HON_PLUGIN_FORMAT,
HON_PLUGIN_DECODE,
HON_PLUGIN_OFFLINE

};
MenuID is the identifier that scanners use to identify different plug-ins when they
pass menu barcodes to plug-ins. (See 'ProcessingBarcode" on page 27).

Export Symbols for Other Plug-ins
You can reference symbols that are defined in other functions. This helps you
divide plug-ins into parts so that you can upgrade specific parts of the plug-in
while keeping the rest of the plug-in unchanged.

To export a symbol to other plug-ins, use the macro ‘EXPORT_SYMBOL(symbol)’:
int HelloWorld(void)
{

printf("Hello World Symbol\r\n");
return 0;

}
EXPORT_SYMBOL(HelloWorld);

Note: You must define the plug-in that exports symbols for other plug-ins to call before
defining any other plug-ins that will call the exported symbols in the plug-in
configuration file. Otherwise, the loading of plug-ins will fail.

Define Plug-in Entry Function and Exit Function
Since the plug-in is not an executable program binary, it does not have “main”
function. Instead, it contains an entry function and an exit function. The entry
function is called when the plug-in is loaded to the initial plug-in and register plug-
in APIs. You may need the exit function to clean up the plug-in contents when
removing it.

Define your plug-in entry and exit functions by using the following prototypes:
int init_plugin(HONPluginRawInfo *plugin);
void cleanup_plugin(void);
Total Freedom 3.0 User Guide 7

The definitions of the entry function and exit function in HelloWorld.c are:
int init_plugin(HONPluginRawInfo *plugin)
{
/* This is a Hello World plug-in sample and you can add what
you want here */

printf("/******************************/\r\n");
printf(" Hello World Plug-in \r\n");
printf("/******************************/\r\n");

return 0;
}

void cleanup_plugin(void)
{

return;// Do nothing
}

The entry function registers plug-in APIs. (See 'Register APIs" on page 29).
8 Total Freedom 3.0 User Guide

Makefile
The sample plug-in projects provide a frame structure of the Makefile for creating
your own plug-in(s). You can easily generate a Makefile by modifying the sample
Makefile. The Makefile template is updated to support generating the MOCF file.
PREFIX = /home/honeywell/sandbox/my_sdk/PluginToolbin

CFLAGS = -march=mips32r2 -mabi=32 -mfp64 -Wall -Werror -Wundef -
fomit-frame-pointer -Wstrict-prototypes -Wno-trigraphs -fno-
strict-aliasing -fno-common -I${PREFIX}/mipsel-buildroot-linux-
gnu/include

LDFLAGS = -L${PREFIX}/mipsel-buildroot-linux-gnu/lib -L${PREFIX}/
lib/gcc/mipsel-buildroot-linux-gnu/9.3.0

ASFLAGS = -march=mips32r2

Build Tools
AS = $(PREFIX)/bin/mipsel-buildroot-linux-gnu-as
CC = ${PREFIX}/bin/mipsel-buildroot-linux-gnu-gcc
LD = ${PREFIX}/bin/mipsel-buildroot-linux-gnu-ld
STRIP = ${PREFIX}/bin/mipsel-buildroot-linux-gnu-strip
APPENDMOC = ${PREFIX}/Tools/AppendToMocf
COMPATPODFILE = ${PREFIX}/Tools/AppCompatProd.txt
COMPATPODFILERF = ${PREFIX}/Tools/AppCompatProdRF.txt

#
User defined fields
Modify 'BINNAME' to define the name of the plug-in output
Modify 'OBJS' to define list of object file names
#

#
BINNAME = Format
OBJS = format_plugin_sample.o

Targets
all: moc

.PHONY: moc

moc:$(BINNAME).moc $(BINNAME)_RF.moc

$(BINNAME).moc: $(BINNAME).plugin $(BINNAME)Conf
$(APPENDMOC) -m $@ -t CompatProd -f $(COMPATPODFILE) -d
$(APPENDMOC) -m $@ -t user -f $(BINNAME).plugin
$(APPENDMOC) -m $@ -t user -f $(BINNAME)Conf
Total Freedom 3.0 User Guide 9

$(BINNAME)_RF.moc: $(BINNAME).plugin $(BINNAME)Conf
$(APPENDMOC) -m $@ -t CompatProd -f $(COMPATPODFILERF) -d
$(APPENDMOC) -m $@ -t user -f $(BINNAME).plugin
$(APPENDMOC) -m $@ -t user -f $(BINNAME)Conf

$(OBJS): %.o: %.c

$(BINNAME).plugin: $(OBJS)
$(LD) -r $(LDFLAGS) -o foo.bin $(OBJS) -lc -lmatrix -lgcc
$(STRIP) -g -o $@ foo.bin
rm -rf foo.bin

clean:
-rm -f *.o *~ $(BINNAME).plugin *.moc

You can use the Makefile template to build a MOCF file of a single plug-in along
with a configuration file. To put multiple plug-ins in one MOCF file, use the tool
“AppendToMocf” and the product-compatible file “AppCompatProd.txt”, located in
the Tools folder where the toolkits were installed. Put the plug-ins that you want to
add to the MOCF file and the plug-in configuration file in the same folder and use
following commands:

$(ToolKitsInstallDir)/Tools/AppendToMocf -m Plugin.moc -t
CompatProd -f ${ ToolKitsInstallDir }/Tools/AppCompatProd.txt
-d
$(ToolKitsInstallDir)/Tools/AppendToMocf -m Plugin.moc -t user
-f a.plugin
$(ToolKitsInstallDir)/Tools/AppendToMocf -m Plugin.moc -t user
-f b.plugin
$(ToolKitsInstallDir)/Tools/AppendToMocf -m Plugin.moc -t user
-f c.plugin
……
$(ToolKitsInstallDir)/Tools/AppendToMocf -m Plugin.moc -t user
-f PluginConf

In this example, “Plugin.moc” is the MOCF file that contains all plug-ins and a con-
figuration file. The files “a.plugin”, “b.plugin” and “…plugin” are plug-ins you want
to put in the MOCF file. “PluginConf” is the plug-in configuration file.

Build Plug-in
To build a plug-in, go to source directory for the plug-in and type:

make
To clean the project and remove all earlier compiled objects, go to the source direc-
tory and type:

make clean
10 Total Freedom 3.0 User Guide

In a new build environment, the plug-in configuration file must be in the same
folder with the source code and must be named “$(BINNAME)Conf” so that Make-
file can invoke tools to generate a MOCF file containing plug-in and configuration
files. You can modify your configuration file and type “make moc” to generate a
new MOCF file without re-compiling the plug-in:

make moc

Plug-in Configuration File
The plug-in configuration file helps plug-ins load properly. A plug-in configuration
file controls the operation of each plug-in class. You must assign a single configu-
ration file to a plug-in class for the system to execute plug-ins in that class.

The configuration file format conforms to XML version 1.0. The parser on the
device will parse the format as described below and will not necessarily be fully
XML compliant. Note that inserting comments is optional. When this configura-
tion file is reported to the host, the comments will remain. The items (not including
comments) in the configuration file are as follows, with each item defined in the
order of appearance.

1. <?xml version="1.0"?>

2. One of the following must appear, depending on the plug-in class. Each file
must contain only one plug-in class configuration: <Decode_PlugIn>,
<Format_PlugIn>, or <Offline_Plugin>.

Note: Each plug-in within a class requires a unique identifier. Immediately following this
identifier are all the definitions associated with that particular plug-in. The identifier
does not need to match plug-in file names or the name you assigned the plug-in. This
identifier is used solely for reference within this document, both to demarcate all
definitions associated with the plug-in and to allow plug-in definitions within this file
to reference one another, such as for passing control from one plug-in to another.
When you create this file, ensure that all plug-in identifiers are unique. The plug-in
identifier must appear in the form <plug-in identifier>, using a unique identifier as
described above.

If two or more plug-ins are defined with the same tag name, the scanner will load the
one that is defined first in the configuration file and ignore the other(s) without
reporting an error.

a. You can include the name you assigned to the plug-in within the configura-
tion file. The name is overridden by any value obtained from the plug-in
when it is loaded. This name is always output in reports to the host. The for-
mat is as follows:

<name>
Plug-in name string
</name>

b. You can include the company name of the plug-in within the configuration
file. It is overridden by any value obtained from the plug-in when it is
Total Freedom 3.0 User Guide 11

loaded. This company name is always output in reports to the host. The
format is as follows:

<companyname>
Company name string
</companyname >

c. You can also include the license status of the plug-in within the
configuration file. License status is reported with a value of YES or NO. This
field is ignored as an input in the configuration file, as the plug-in itself is
responsible for determining license status. This license status is always
output in reports to the host. The format is as follows:

<licensed>
YES or NO
</licensed>

d. The following definition determines whether or not the plug-in is to be used.
It contains a value of YES or NO. If not specified, the default value is YES.
You can use NO in those instances when a plug-in resides on the barcode
reader for future or alternate use but is not to be used in the present
configuration. The format is as follows:

<active>
YES or NO
</active>

Note: To deactivate a plug-in, set the field of “active” in the configuration file to “NO”. The
inactive plug-ins are not loaded. There is no error beep to indicate that the inactive
plug-ins were ignored.

e. The plug-in major revision string, which you assign, can be included in the
configuration file. It is overridden by any value obtained from the plug-in
when it is loaded. The major revision string is always output in reports to the
host. The format is as follows:

<majorrevision>
Major revision string
</majorrevision>

f. The plug-in minor revision string that you assign can also be included in the
configuration file. It is overridden by any value obtained from the plug-in
when it is loaded. The minor revision string is always output in reports to
the host. The format is as follows:

<minorrevision>
Minor revision string
</minorrevision>

g. The plug-in build number string that you assign can be included in the
configuration file. It is overridden by any value obtained from the plug-in
when it is loaded. The build number string is always output in reports to the
host. The format is as follows:

<build>
Build number string
</build>

h. The plug-in certificate number string supplied by Honeywell can be
included in the configuration file. It is overridden by any value obtained
12 Total Freedom 3.0 User Guide

from the plug-in when it is loaded. The certificate number string is always
output in reports to the host. The format is as follows:

<certificate>
Certificate number string
</certificate>

i. The plug-in certificate time stamp string supplied by Honeywell can be
included in the configuration file. The format of the string is “YYYY/MM/DD
HH:MM:SS”. The string is overridden by any value obtained from the plug-in
when it is loaded. The certificate time stamp string is always output in
reports to the host. The format is as follows:

<certificatetime>
Certificate time stamp string
</certificatetime>

j. The GUID string supplied by Honeywell can be included in the configuration
file. It is overridden by any value obtained from the plug-in when it is
loaded. The GUID string is always output in reports to the host. The format
is as follows:

<guid>
Certificate number string
</guid>

k. The following value defines the name of the plug-in binary file. This field is
mandatory. The format is as follows:

<filename>
File name string
</filename>

Note: The PlugInFileName must be only the file name without any path.

l. The following optional field defines whether the plug-in’s main processing
function (including the main process function since it will treated as a
special plug-in) should receive original data (ORIGINAL), or data as it was
modified by the last plug-in in the plug-in chain (MODIFIED). If not
specified, the default is ORIGINAL. The format is as follows:

<entrydatastate>
ORIGINAL or MODIFIED (BOTH)
</entrydatastate>

m. The following optional field defines how to chain the plug-in based on the
exit criteria from this plug-in’s main processing function. Parameter values
are as follows:

CHAINALWAYS Always chain to the next plug-in, regardless
of exit criteria.

CHAINIFSUCCESS Chain only if the plug-in exit state indicates
success.

CHAINIFFAILURE Chain only if the plug-in exit state indicates
failure.

CHAINNEVER Don’t chain at all, regardless of the plug-in
exit state.
Total Freedom 3.0 User Guide 13

 If not specified, the default is CHAINALWAYS. The format is as follows:

<chainonexit>
CHAINALWAYS or CHAINIFSUCCESS or CHAINIFFAILURE or
CHAINNEVER
</chainonexit>

n. A matching terminator for each plug-in identifier must follow all the
definitions for that plug-in. The plug-in terminator must appear in the form
</plug-in identifier>, where the plug-in identifier is the same used at the
start of the plug-in definition.

3. One of the following must appear, depending on the plug-in class: </
Decode_PlugIn>, </Format_PlugIn>, or </Offline_Plugin>.

4. The following is a sample format plug-in configuration file, assuming the
following criteria:

• Configuration file name = FormatPlugIn_conf.

• Menu setting PLGFON is set to "FormatPlugIn_conf".

• Identifier = SampleFormatPlugIn_1

• Developer assigned name = SampleFormatPlugIn

• Developer assigned company name = Plug-In Developer, Inc.

• Major revision = 5

• Minor revision = 3

• Build number = 37

• Certificate number = 102148 dated 2009/08/10 15:00:05

• No GUID defined

• Binary file name = FormatPlugIn.bin

• This plug-in takes modified data, rather than original data, as its input.
14 Total Freedom 3.0 User Guide

• Chain to the next plug-in if this plug-in fails:
<?xml version="1.0"?>
< ! --- Should be Format_Plugin since currently we only
support format plug-ins --- !>
<Format_PlugIn>

< ! --- Plug-in ID name. Should conforms to plug-in
filename currently --- !>
< SampleFormatPlugIn_1>

<name> SampleFormatPlugIn </name>
<company> Plug-In Developer, Inc. </company>
<licensed> YES </licensed>
<active> YES </active>
<majorrevision> 5 </majorrevision>
<minorrevision> 3 </minorrevision>
<build> 37 </build>
<certificate> 102148 </certificate>
<certificatetime> 2009/08/10 15:00:05 </
certificatetime>
<guid></guid>
<filename> FormatPlugIn.bin </filename>
<entrydatastate> MODIFIED </entrydatastate>
<chainonexit> CHAINIFFAILURE </chainonexit>

</ SampleFormatPlugIn_1>
</Format_PlugIn>

Configurations of System Routines
Each class of plug-ins has routines to provide functions. The scanner also has
routines that provide functions, called system routines. System routines are
enabled and called after all plug-in routines have been called.

You can disable/enable system routines by editing the plug-in configuration file.
To do so, add a special plug-in entry in the XML configuration file. The entry name
MUST be “SystemRoutine”. There are two sub-entries available in this entry:
“entrydatastate” and “chainonexit”.

Configuration files without any explicit system routine definitions are also sup-
ported. If there is no system routine configuration entry in the XML file, by default
the scanner will call the system routine after all plug-ins have been called.

If you do not want the system routine to parse the input data, set the tag “chainon-
exit” to CHAINNEVER, which means the system routine is not called in the calling
sequence.
Total Freedom 3.0 User Guide 15

If there is no system routine configuration in the configuration file, the default set-
tings are used. The default settings for system routine are “entrydatastate” –
MODIFIED and “chainonexit” – CHAINALWAYS. Then, regardless of whether or not
the plug-in parsed the decode result data, the system routine is always called and
will receive the output data from the plug-in and treat the received data as input.

The following is an example of disable/enable system routines:
<?xml version="1.0"?>
<Format_PlugIn>
<SystemRoutine>

<entrydatastate> MODIFIED </entrydatastate>
<chainonexit> CHAINALWAYS/ </chainonexit>
</SystemRoutine>

< FormatPlugIn_1>
<! Configurations for FormatPlugin_1!>
……

</ FormatPlugIn_1>

< FormatPlugIn_2>
<! Configurations for FormatPlugin_2!>
……

</ FormatPlugIn_2>

……

</Format_PlugIn>

Memory and Storage for Plug-ins

File Size of Plug-in
The file size of plug-ins is limited to 2 MB. If the total size of your plug-ins and all
the files they generate during runtime reaches 2 MB, you cannot download any
more plug-ins to the scanner.

Note: The total file size for the 8680iB is 54 MB and for the 8690i is 188 MB.

The size of a single plug-in is limited to 2 MB. If you try to download a plug-in
larger than 2 MB, the download will fail. In addition, if the plug-in debug setting is
turned on (by sending menu command “PLGDBG1.” to the scanner), you will
receive download failure information from the scanner.
16 Total Freedom 3.0 User Guide

Stack Size
The size of stack for plug-ins is limited to 200K bytes. Therefore, you cannot define
local variables larger than 200K bytes.

Global Variables
If any global variable is not initialized in the plug-in, the memory for the global vari-
able is allocated dynamically during loading time. The size for global variables in
your plug-in is limited to 1 MB. Therefore, do not define global variables with ini-
tialization larger than 1 MB.

Heap
The heap size for plug-ins is 1 MB. Standard library functions such as malloc, free,
calloc and realloc are supported. If you try to allocate memory larger than 1 MB,
the memory allocate functions (malloc, calloc and realloc) will fail.

Create an MOCF file with Plug-ins
Convert or merge the plug-ins and plug-in configuration files to the “MOCF” file
container before downloading the plug-in to a scanner. A scanner will not accept a
binary plug-in file. Use the “AppendToMocf” tool to create an MOCF file. This tool
is located in the folder $PluginDevToolInstallDir/Tools. In the same folder there
are two compatible product record files (AppCompatProd.txt and AppCompatPro-
dRF.txt), which you can use to generate MOCF files for corded and cordless scan-
ners.

Note: There are examples for creating an MOCF file in the Makefile of the sample code. You
can use the example Makefile in the sample code of the toolchain as reference to
create your own Makefile.

Create an MOCF File that Contains a Single File
To create an MOCF file that only contains one file, use the shell commands:

AppendToMocf –m $(OutputFile) –t CompatProd –f
$(CompatProdRecFile) -d
AppendToMocf –m $(OutputFile) –t user –f $(PluginFile)

Note: Create the MOCF file name $(OutputFile). $(CompatProdRecFile) is the compatible
product record file name. If you want the plug-in to be applied to corded scanners,
set $(CompatProdRecFile) to AppCompatProd.txt, otherwise, use
AppCompatProdRF.txt. $(PluginFile) is the plug-in binary file or plug-in configuration
file that you must add to the MOCF.
Total Freedom 3.0 User Guide 17

Create an MOCF File that Contains Multiple Files
You can create an MOCF file with multiple files. Once an MOCF file is created, use
the AppendToMocf tool to add more files to the MOCF file.

AppendToMocf –m $(OutputFile) –t CompatProd –f
$(CompatProdRecFile) -d
AppendToMocf –m $(OutputFile) –t user –f $(PluginFile1)
AppendToMocf –m $(OutputFile) –t user –f $(PluginFile2)
AppendToMocf –m $(OutputFile) –t user –f $(PluginFile3)
……
AppendToMocf –m $(OutputFile) –t user –f $(PluginFilen)

Add Custom Defaults File to Plug-in MOCF file
Custom defaults files can be downloaded to a scanner for special uses. To add a
custom defaults file to an MOCF file, use the following shell command:

AppendToMocf –m $(OutputFile) –t CustomDefaults –f
$(DefaultsFile)

Download Plug-in and Configuration File
You can download the plug-in and configuration file to a scanner using EasyConfig
software. Connect the scanner to EZConfig for Scanning. Click on the Download
selection. Under Firmware Download, use the … button to browse to the MOCF file
name. Click on Download to Device.

You may also use the Scan Data selection to send the command “PLGDIR” to verify
that your files have saved to the scanner correctly.
18 Total Freedom 3.0 User Guide

CHAPTER

3

Total Freedom 3.0
CONFIGURATION FILE SAMPLES
FormatPlugin_1 and FormatPlugin_2
In the following configuration, FormatPlugin_1 is called and then, if FormatPlug-
in_1 parsed the input data successfully, the system routine is called and the output
data from FormatPlugin_1 is passed to the system routine as input. If FormatPlug-
in_1 failed to parse the data, the system routine is not called. After system routine
is treated, FormatPlugin_2 is treated according to its settings (to be called or not,
what kind of input data should be passed, etc.). All the plug-ins are treated by the
calling logic component in the firmware in the order of their appearance in the
XML file.

<?xml version="1.0"?>
<Format_PlugIn>

< FormatPlugIn_1>
<! Configurations for FormatPlugin_1!>
……

</ FormatPlugIn_1>

<SystemRoutine>
<entrydatastate> MODIFIED </entrydatastate>

<chainonexit> CHAINIFSUCCEED </chainonexit>
</SystemRoutine>

< FormatPlugIn_2>
<! Configurations for FormatPlugin_2!>
……

</ FormatPlugIn_2>

< FormatPlugIn_3>
<! Configurations for FormatPlugin_3!>
……

</ FormatPlugIn_3>

</Format_PlugIn>
 User Guide 19

Call the System Routine
In the next example, the system routine is called whether or not FormatPlugIn_1
parsed the input data. The system routine will always use the original data as input
(the data which was not treated by FormatPlugIn_1).

<?xml version="1.0"?>
<Format_PlugIn>

< FormatPlugIn_1>
<! Configurations for FormatPlugin_1!>
……

</ FormatPlugIn_1>

<SystemRoutine>
<entrydatastate> ORIGINAL </entrydatastate>

<chainonexit> CHAINALWAYS </chainonexit>
</SystemRoutine>

< FormatPlugIn_2>
<! Configurations for FormatPlugin_2!>
……

</ FormatPlugIn_2>

< FormatPlugIn_3>
<! Configurations for FormatPlugin_3!>
……

</ FormatPlugIn_3>

</Format_PlugIn>
20 Total Freedom 3.0 User Guide

Disable Calling the System Routine
In the next example, the system routine is not called at all. This case disables call-
ing the system routine.

<?xml version="1.0"?>
<Format_PlugIn>

< FormatPlugIn_1>
<! Configurations for FormatPlugin_1!>
……

</ FormatPlugIn_1>

<SystemRoutine>
<entrydatastate> MODIFIED </entrydatastate>

<chainonexit> CHAINNEVER </chainonexit>
</SystemRoutine>

< FormatPlugIn_2>
<! Configurations for FormatPlugin_2!>
……

</ FormatPlugIn_2>

< FormatPlugIn_3>
<! Configurations for FormatPlugin_3!>
……

</ FormatPlugIn_3>

</Format_PlugIn>
Total Freedom 3.0 User Guide 21

System Routine at End of Plug-In Sequence
In the example above, there is no system routine configuration entry in the XML
file. So the system routine is put at the end of the plug-in calling sequence. In
other words, the system routine is called by default after all the plug-ins have been
processed, whether or not the last plug-in parsed data, and will take the data
parsed by all the plug-ins as input data.

<?xml version="1.0"?>
<Format_PlugIn>

< FormatPlugIn_1>
<! Configurations for FormatPlugin_1!>
……

</ FormatPlugIn_1>

< FormatPlugIn_2>
<! Configurations for FormatPlugin_2!>
……

</ FormatPlugIn_2>

< FormatPlugIn_3>
<! Configurations for FormatPlugin_3!>
……

</ FormatPlugIn_3>

</Format_PlugIn>
22 Total Freedom 3.0 User Guide

CHAPTER

4

Total Freedom 3.0
GENERATE MENU BARCODES
Each plug-in has a unique ID assigned to it. The ID is used to generate a menu
barcode for the plug-in. Plug-in menu codes are generated using either a Normal,
or a Lock-Mode method.

Normal
Using the normal method, conform to the following format when you generate
menu barcodes:

990XYYYYYDATA

"990" is a fixed prefix for plug-ins, "X" stands for plug-in types (0 for decode, 2 for
format), "YYYYY" stands for a five-digit hexadecimal ID number, and DATA is the
menu data that is sent to the plug-in. The "990XYYYYY" prefix is stripped off before
the menu code is sent to the plug-in.

The programming barcode data can also be sent as a menu command to the scan-
ner so that the plug-in can be configured that way. This only applies to the Normal
method.

Lock-Mode
Using the Lock-Mode method, you can scan an Enter barcode to lock the plug-in
when you want to configure the plug-in via menu barcodes.

The format of the enter code is:

990XEntYYYYY

"990" is a fixed prefix for plug-ins, "X" stands for plug-in types (0 for decode, 2 for
format), Ent indicates this is a lock-mode enter code, and "YYYYY" stands for a
five-digit hexadecimal ID number.
 User Guide 23

Only one plug-in can be locked at a time. Once the plug-in is locked, all menu
codes scanned are passed to the plug-in directly by calling the BarcodeProcessing
API. Scanning data codes will cause the device to issue an error when a plug-in is
locked. To exit the lock-mode, scan an Exit menu barcode.

If the scanner is in lock-mode, generate menu barcodes that conform to the format
990XDATA ("990" is a fixed prefix for the plug-in menu and "X" stands for plug-in
types). When one of these codes is scanned, the prefix 990X is stripped off and
DATA is passed to the locked plug-in if the locked plug-in is the type indicated by X.

The format of an Exit code is:

99Exit

There is an exception for scanning menu codes when the scanner is in lock-mode.
If you scanned a menu code conforming to the format of the specific menu codes
used in the normal way (990XYYYYYDATA), the scanner will strip off the "990XY-
YYYY" header and then pass the "DATA" to the plug-in.

Note: The helper plug-ins do not provide any API to the device, and they do not need any
identifier. You must define the Macro "MenuID" to "-1", which is ignored.
24 Total Freedom 3.0 User Guide

CHAPTER

5

Total Freedom 3.0
FORMAT PLUG-IN API
DataEdit
DataEdit is the main routine for formatting plug-ins. This API is called when the
output string must be formatted before being sent out.

Function prototype:

int /* Return zero on success, -1 if an error
occurred */

(*DataEdit)(DataEditParam
*format_param);

/* Input: Format parameters structure */
 User Guide 25

The parameter type “DataEditParam” is defined as:
typedef struct {

// Revision number
int RevisionNumber;
// Input and Output Data. Note that input data could be byte
wide or word wide. depends on the value of CharSize.
#ifdef MATRIXPLUGIN_DATAEDITPARAM_MESSAGE_8BIT

unsigned char *message;
#else

short *message;
#endif
// Number of Data Characters
int length;
//Character size (1 for byte, 2 for word)
int CharSize;
// Hand Held Products internal Code (Symbology) ID
char HHPcodeID;
// AIM/FACT/ISO "Symbology Identifier"
char AIMcodeLetter;
// ... and "Modifier" character
char AIMcodeModifier;

} DataEditParam;
Note: The “message” member field of structure DataEditParam contains the passed-in

data string. You must put the formatted data string back to “message” buffer. The
length of the formatted data string must not exceed the length of the original string
by more than 500 bytes, otherwise it will cause an overflow.

The function returns -1 if an error occurred or formatting failed. If the format pro-
cessing is successful, the function returns zero to indicate success, and restores
the processed string to the “message” field in the input structure.
26 Total Freedom 3.0 User Guide

Below is an example of DataEdit API. This API of the plug-in simply adds the prefix
“Code128*” and applies it to all the Code 128 barcodes.
/** This API is called to perform a data format.
 * The plug-in developer should implement this
 * routine by himself and set address of this
 * function to the "DataEdit" field of the
 * "DataEditApi" structure.
 */
int MatrixPluginDataEdit(DataEditParam *pFormatParam)
{

// Add your Format code here and copy the result back to
pFormatParam->message.
unsigned char *buffer = NULL;
unsigned short WidePrefix = {‘C’, ‘o’, ‘d’, ‘e’, ‘1’, ‘2’, ‘8’,
‘*’};

// if not Code 128, just return -1
if(pFormatParam->HHPcodeID != WA_CODELETTER_CODE128){

return -1;
}else{

printf("This is Code128\r\n");
}
buffer = malloc((pFormatParam->length + 100)*(pFormatParam-
>CharSize));
if(!buffer)

return -1;
if(pFormatParam->CharSize == 1){

memcpy(buffer, “Code128*”, 8);
memcpy(buffer+8, pFormatParam->message, (pFormatParam-
>length)*(pFormatParam->CharSize));
}else if(pFormatParam->CharSize == 2){
memcpy(buffer, WidePrefix, 16);
memcpy(buffer+16, pFormatParam->message, (pFormatParam

>length)*(pFormatParam->CharSize));
}
// Set length after data format
pFormatParam->length += 8;
free(buffer);
return 0;

}

ProcessingBarcode
This function is used to process specific user-defined programming barcodes.

Function prototype:
Total Freedom 3.0 User Guide 27

The function returns -1 if an error occurred or processing failed. If the program-
ming barcode is processed successfully, the function returns zero to indicate suc-
cess.

CheckLicense
This function is used to validate the license of the plug-in.

Function prototype:

The product serial number is passed to the function as a null-terminated string of
characters. The function must return 0 if the license is valid or -1 if not.

Note: This function is called after the plug-in is loaded and initialized. Plug-ins should keep
the result of the CheckLicense function during the runtime of the plug-in, and should
use the result to determine if the other APIs (for example, ProcessingBarcode) can be
called or not (by returning 0 or -1 when the API is called).

Setting up a license check mechanism requires two parts: license check and
license file generation.

To generate a license file, create a data string from the serial number of the scan-
ner using your own encryption algorithm. You could make a programming barcode
(the programming barcode should conform to the plug-in programming barcode
format “990XYYYYYDATA”) based on this data string. Add code in the API “Pro-
cessingBarcode” so that after the license programming barcode is scanned, a
license file can be generated in the scanner. Typically in “ProcessingBarcode”, to
support licensing you must:

1. Distinguish a programming barcode for licensing.

2. Decrypt the passed in data of the programming barcode.

3. Extract the serial number from the Decrypt data and compare it with the serial
number of the scanner.

int /* Return zero on success, -1 if an
error occurred */

(*ProcessingBarcode)(
char *pMenuData, /* Input: Pointer of menu code data

*/
int DataLength); /* Input: Data length */

int /* Return zero on success, -1 if an
error occurred */

(*CheckLicense)(
char *SN); /* Product serial number */
28 Total Freedom 3.0 User Guide

4. If the serial number from decrypted data is the same as the serial number of
scanner, create a license file in the scanner to contain the license information
of the plug-in.

You can use a group ID method to implement your license check mechanism so
that you do not need to generate programming barcodes for every scanner. A
group ID is the identifier assigned to scanner groups, and it resides in the scanner.
If the value of the group ID is 0, then the scanner does not have a group ID. For
scanners with the same group ID, you can create a programming barcode to gener-
ate the license file. The CheckLicense function may be called twice if the scanner
has a group ID. The plug-in must remember both the passed-in serial number and
group ID during the runtime.

Register APIs
The register API function is called to register APIs of the plug-in so they can be
called by scanner applications. It returns zero for success and -1 for error.

Function prototype:

The plug-in object structure type is defined as:

int /* Return zero on success, -1 if an
error occurred */

register_apis(
void *Plugin, /* Plugin object */
void *APIS); /* API structure pointer */

typedef struct{
char PluginRawName[PLUGIN_ID_LEN]; /* Raw name in plugin

binary */
enum HONPluginClassType
PluginRawClassType;

/* Raw Class Type in
plguin binary */

int (*PluginInitRoutine)(void *Info); /* Startup function.
*/

void (*PluginExitRoutine)(void); /* Destruction
function. */

void *PluginApis; /* Plugin APIs. This
should be in this
structure in order
that the plugin could
assign APIs' address
here */
Total Freedom 3.0 User Guide 29

The API structure type is defined as:
typedef struct
{

// Revision Number. It is used for Plug-in API forward
compablity
int RevisionNumber;
// Format API callback
int (*DataEdit)(DataEditParam *pFormatParam);
// Plug-in Menuing API callback
int (*ProcessingBarcode)(char *pMenuData, int DataLength);
// Check license API callback
int (*CheckLicense)(char *SN);
// Get version API callback
int (*GetVersion)(VersionInfo *pInfo);

} DataEditApi;

int MenuIdentifier; /* This field is the
identifier assigned
from Hoenywell. Menu
codes with the
identifier prefix are
passed to * the
corresponding plug-in
*/

/* Other plugin infos */
char CompanyName[PLUGIN_STRING_LEN];
char
MajorVersionNumber[PLUGIN_STRING_LEN];
char
MinorVersionNumber[PLUGIN_STRING_LEN];
char BuildNumber[PLUGIN_STRING_LEN];
char
CertificateNumber[PLUGIN_STRING_LEN];
char
CertificateTime[PLUGIN_STRING_LEN];
char GUID[PLUGIN_GUID_LEN];
char FileName[PLUGIN_STRING_LEN];
} HONPluginRawInfo;
30 Total Freedom 3.0 User Guide

Control the Scanner’s Beeper and LED
This function is a system call to control the scanner’s beeper and LED. Control of
the LED is bound with the beeper, and the plug-in can control the beeper and LED
by calling one system call:

Function prototype:
int /* return -1 for failure and return 0 for success */
beep_led_io(
unsigned int const* pBeepSeq, /* Input: the beeper/LED control
entry sequence */
unsigned int SeqLen);/* Input: length of the control sequence */
The beeper/LED control entry sequence is an array of integers starting with an
audible LED sync (defined in "matrix_beep_led.h"). Three types of LEDs are
defined: good read flash, error flash, and no LED. The following integers stand for
entries of the sequence. The rules for the entries are:

• Each sequence should start with an audible LED sync (LED_DEFINE) and end
with a terminator (0x00).

• The odd entries of the sequence are duration in heartbeats; the even entries are
the frequency (0 is a rest).

• Frequency 100 or above is an audible sound (provided the beeper can create the
sound).

• Frequency 100 or above will use the LED specified at the first char of the
sequence.

• For each silent pause, use one of the LED defines as the frequency.

Example: This sequence can be read as 10mS sound at 200Hz with no led, then 10mS silence
with no LED:

unsigned int ExampleSeq[] = {audible LED sync (LED_DEFINE),
duration of next freq (mS), audible freq (Hz), duration (mS),
silent freq (LED_DEFINE), end of string (0x00)};

unsigned int StandardClickSeq[] = {NO_LED, 10, 200, 10, NO_LED,
0x00};

Example: The beeper duration has a resolution of 10ms.
unsigned int StandardBeepSeq[]={LED Synchronized?,mS
(duration),frequency hz,end of string (0x00)};

Note: For reference, read the header file "matrix_beep_led.h"
Total Freedom 3.0 User Guide 31

Play Audio Files
This function is a system call to play audio files. The Makefile needs to be updated
to include the .wav files. An example is shown below:
$(BINNAME).moc $(BINNAME)_RF.moc
$(BINNAME).moc: $(BINNAME).plugin $(BINNAME)Conf
$(APPENDMOC) -m $@ -t CompatProd -f $(COMPATPODFILE) -d
$(APPENDMOC) -m $@ -t user -f $(BINNAME).plugin
$(APPENDMOC) -m $@ -t user -f userid
$(APPENDMOC) -m $@ -u user -f <Audio File Name>.wav

After the audio file is included the audio file can be played through the plug-in
using MATRIX_AUDIO system command. The parameter is the audio filename. An
example is shown below:
struct matrix_syscall_param pParam;
pParam.syscall_id = MATRIX_AUDIO;
pParam.params[0] = (int *) <Audio character array pointer>;
matrix_syscall(&pParam);
32 Total Freedom 3.0 User Guide

CHAPTER

6

Total Freedom 3.0
DECODE PLUG-IN API
Logic of Calling Decode Plug-ins
The order of calling decode plug-ins is controlled by the configuration file but
should also conform to the scanner’s internal logic. The captured image is sent to
the system decode routine first to detect programming barcodes. If it is a pro-
gramming barcode, the barcode decode is processed directly and the image is not
passed to any plug-ins. If the image is not a programming barcode, plug-ins and
the system decode routine is called to decode the image according to the order in
the configuration file.

Once the image is recognized and decoded, the decoding process is stopped. The
plug-ins configured to be invoked after the current plug-in are ignored even if they
are configured as CHAINALWAYS or CHAINIFSUCCEED. Therefore, you must
determine the order of calling plug-ins and define the proper configuration file to
ensure the plug-ins can be called. For instance, if there are two plug-ins in the
plug-in chain and both of them can recognize and decode the same type of bar-
codes, you must define the plug-in that you want to use to decode that type of bar-
codes before defining the second plug-in.

Decode Plug-in APIs

Decode
This API, which is the main routine for a decode plug-in, is called to decode the
image captured by a scanner.

Function prototype:

int /* Return zero on success, -1 if an
error occurred */

 (*Decode)(
unsigned char *pBuffer, /* Input: Pointer to image buffer */
 User Guide 33

When the decode processing succeeds, the function returns zero. The function
returns -1 if an error occurs or decode failed.

ProcessingBarcode
The usage of this function is the same as the format plug-in. (See
"ProcessingBarcode" on page 27).

Function prototype:

When the programming barcode is processed successfully, the function returns
zero. The function returns -1 if an error occurs or processing failed.

CheckLicense
The usage of this function is the same as the format plug-in. See
"CheckLicense" on page 28.

Function prototype:

The product serial number is passed to the function as a null-terminated string of
characters. The function returns 0 if the license is valid or -1 if not.

CheckVersion
Function prototype:

int width, /* Input: image width */
int height); /* Input: image height */

int /* Return zero on success, -1 if an
error occurred */

 (*ProcessingBarcode)(
char *pMenuData, /* Input: Pointer of menu code data

*/
int DataLength); /* Input: Data length */

int /* Return zero on success, -1 if an
error occurred */

 (*CheckLicense)(
char *SN); /* Product serial number */

int /* Return zero on success, -1 if an
error occurred */

 (*CheckVersion)(
34 Total Freedom 3.0 User Guide

The version information type “VersionInfo” is defined as:

The plug-in information is filled into the input parameter structure when the func-
tion returns 0, which indicates that the information was obtained successfully. The
function returns -1 if an error occurs.

Register APIs
The register API function is a system call function for a plug-in to register its APIs.
It returns zero for success and -1 for error.

Function prototype:

The plug-in object structure type is defined as:

VersionInfo *Info); /* Plug-in version info structure */

typedef struct {
 int RevisionNumber; /* Revision number */
 char *GUID; /* GUID of the plug-in */
 char *PluginName; /* Plug-in name */
 char *CompanyName; /* Company name of the plug-in */
 int MajorVersion; /* Major version number */
 int MinorVersion; /* Minor version number */
 int BuildNumber; /* Build number of the plug-in

version */
char *CertificateNumber; /* Certificate number of the plug-in

version */
char *CertificateTime; /* Certificate time (yyyy/mm/dd

hh:mm:ss) */
} VersionInfo;

int /* Return zero on success, -1 if an
error occurred */

 register_apis(
void *Plugin, /* Plugin object */
void *APIS); /* API structure pointer */

typedef struct{
char PluginRawName[PLUGIN_ID_LEN]; /* Raw name in plugin

binary */
enum HONPluginClassType
PluginRawClassType;

/* Raw Class Type in
plguin binary */
Total Freedom 3.0 User Guide 35

int (*PluginInitRoutine)(void *Info); /* Startup function.
*/

void (*PluginExitRoutine)(void); /* Destruction
function. */

void *PluginApis; /* Plugin APIs. This
should be in this
structure in order
that the plugin could
assign APIs' address
here */

int MenuIdentifier; /* This field is the
identifier assigned
from Honeywell. Menu
codes with the
identifier prefix are
passed to * the
corresponding plug-in
*/

/* Other plugin infos */
char CompanyName[PLUGIN_STRING_LEN];
char
MajorVersionNumber[PLUGIN_STRING_LEN];
char
MinorVersionNumber[PLUGIN_STRING_LEN];
char BuildNumber[PLUGIN_STRING_LEN];
char
CertificateNumber[PLUGIN_STRING_LEN];
char
CertificateTime[PLUGIN_STRING_LEN];
char GUID[PLUGIN_GUID_LEN];
char FileName[PLUGIN_STRING_LEN];
} HONPluginRawInfo;
36 Total Freedom 3.0 User Guide

The decode API structure type is defined as:
typedef struct
{

/// Revision Number
int RevisionNumber;
/// Decode API callback
int (*Decode)(unsigned char *pBuffer, int width, int height);
/// Set Decoder Menu
int (*SetDecoderMenu)(void *DecoderSetting);
/// Plug-in Menuing API callback
int (*ProcessingBarcode)(char *pMenuData, int DataLength);
/// Check license API callback
int (*CheckLicense)(char *SN);
/// Get version API callback
int (*GetVersion)(VersionInfo *pInfo);
void (*GPIO_Plugins)(void);

} DecodeApi;
Total Freedom 3.0 User Guide 37

38 Total Freedom 3.0 User Guide

CHAPTER

7

Total Freedom 3.0
OFFLINE PLUG-IN API
Logic of Calling Offline Plug-ins
The order of calling offline plug-ins is controlled by the configuration file but
should also conform to the scanner’s internal logic. The captured image is sent to
the system decode routine first to detect programming barcodes. If it is a program-
ming barcode, the barcode is processed directly and the data is not passed to any
plug-ins. If the image is not a programming barcode, after the system decode rou-
tine is called to decode the image, the decoded data will be sent to offline plug-ins
if offline mode is enabled.

Offline Plug-in APIs

ProcessingEvent
This API is called to process system events passed to the offline plug-in.

Function prototype:

When the event processing succeeds, the function returns zero. The function
returns non-zero if an error occurs.

ProcessingBarcode
This API is used to process scanned barcodes.

Function prototype:

int /* Return zero on success, non-zero
if an error occurred */

(*ProcessEvent)(uint32_t
id); /* Input: Event Identification */
 User Guide 39

When the programming barcode is processed successfully, the function returns
zero. The function returns non-zero if an error occurs or processing failed.

CheckLicense
The usage of this function is the same as the format plug-in. See also CheckLi-
cense on page 32.

Function prototype:

The product serial number is passed to the function as a null-terminated string of
characters. The function returns 0 if the license is valid or -1 if not.

CheckVersion
The usage of this function is the same as the format plug-in. See also CheckVer-
sion on page 32.

int /* Return zero on success, non-zero if an
error occurred */

(*ProcessingBarcode)(
OfflineParam
*offline_param);

/* Input: Pointer of the OfflineParam
structure */

int /* Return zero on success, -1 if an
error occurred */

(*CheckLicense)(
char *SN); /* Product serial number */
40 Total Freedom 3.0 User Guide

Function prototype:
int /* Return zero on success, -1 if an error occurred */
(*CheckVersion)(
VersionInfo *Info); /* Plug-in version info structure */
The version information type “VersionInfo” is defined as:
typedef struct {
int RevisionNumber; /* Revision number */
char *GUID; /* GUID of the plug-in */
char *PluginName; /* Plug-in name */
char *CompanyName; /* Company name of the plug-in */
int MajorVersion; /* Major version number */
int MinorVersion; /* Minor version number */
int BuildNumber; /* Build number of the plug-in version */
char *CertificateNumber; /* Certificate number of the plug-in
version */
char *CertificateTime; /* Certificate time (yyyy/mm/dd hh:mm:ss)
*/
} VersionInfo;
The plug-in information is filled into the input parameter structure when the func-
tion returns 0, which indicates that the information was obtained successfully. The
function returns -1 if an error occurs.

Process Manifest Plug-in APIs
This API is used to receive data from the remote server over Bluetooth or WiFi. This
data can be store in the plug-in to process at a later time when the device is in
offline mode.

Function prototype:
int (*PluginData)(unit8_t*data)

Register APIs
The register API function is a system call function for a plug-in to register its APIs.
It returns zero for success and -1 for error.

Function prototype:

The plug-in object structure type is defined as:

int /* Return zero on success, -1 if an
error occurred */

register_apis(
void *Plugin, /* Plugin object */
void *APIS); /* API structure pointer */
Total Freedom 3.0 User Guide 41

The plugin API structure type is defined as:

typedef struct

{

/// Revision Number

int RevisionNumber;

/// Event processing API callback

typedef struct{
char PluginRawName[PLUGIN_ID_LEN]; /* Raw name in plugin

binary */
enum HONPluginClassType
PluginRawClassType;

/* Raw Class Type in
plguin binary */

int (*PluginInitRoutine)(void *Info); /* Startup function.
*/

void (*PluginExitRoutine)(void); /* Destruction
function. */

void *PluginApis;

/* Plugin APIs. This
should be in this
structure in order
that the plugin could
assign APIs' address
here */

int MenuIdentifier;

/* This field is the
identifier assigned
from Honeywell. Menu
codes with the
identifier prefix are
passed to * the
corresponding plug-in
*/

/* Other plugin infos */
char CompanyName[PLUGIN_STRING_LEN];
char
MajorVersionNumber[PLUGIN_STRING_LEN];
char
MinorVersionNumber[PLUGIN_STRING_LEN];
char BuildNumber[PLUGIN_STRING_LEN];
char
CertificateNumber[PLUGIN_STRING_LEN];
char
CertificateTime[PLUGIN_STRING_LEN];
char GUID[PLUGIN_GUID_LEN];
char FileName[PLUGIN_STRING_LEN];
} HONPluginRawInfo;
42 Total Freedom 3.0 User Guide

int (*ProcessingEvent)(uint32_t id);

/// Plug-in barcode processing API callback

int (*ProcessingBarcode)(OfflineParam *offline_param);
/// Check license API callback

int (*CheckLicense)(char *SN);

/// Get version API callback

int (*GetVersion)(VersionInfo *pInfo);

void (*GPIO_Plugins)(void);

} OfflineApi;

Offline Timer
This is a system call to set a timer parameter in milliseconds. When the timer
expires the response is provided as an event OFFLINE_EVENT_TIMER_EXPIRE.

Example: Define the timer parameters.
struct matrix_syscall_param pParam;
pParam.syscall_id = MATRIX_TIMER;
pParam.params[0] = (int *) <timer value>;
matrix_syscall(&pParam);

Play Audio in Plug-in
See Play Audio Files on page 32 to add audio files to the devices.

Example: Define audio file.
struct matrix_syscall_param pParam;
pParam.syscall_id = MATRIX_AUDIO;
pParam.params[0] = (int *) <Audio Filename without file
extension>;
matrix_syscall(&pParam);
Total Freedom 3.0 User Guide 43

44 Total Freedom 3.0 User Guide

CHAPTER

8

Total Freedom 3.0
DIAGNOSTICS
Boot Mode to Disable Loading Plug-in
If the scanner interface becomes locked due to corrupt plug-ins, you may boot the
scanner without loading plug-ins. The following steps force the scanner to boot in
boot mode:

1. Run EZConfig for Scanning and use Configure-Communications to set the
Baud Rate to 115200, and Word Format to N 8 1.

2. From the menu, select Device-Force Reader to Boot Mode.

3. Power the scanner and press any key.

4. From the Application Explorer pane, select Scan Data.

5. From the menu, select View-Serial Command Window. Enter 232 in the text
box of the Command Center window and click the Send Non Menu Command
button.

6. The scanner loads the application without loading plug-ins.

In this mode, you can scan programming barcodes or send menu commands to
disable the plug-in. After power-cycling the scanner, the new configuration files or
modified plug-ins can be downloaded.
 User Guide 45

View Plug-in Configuration
The menu command “PLGINF” is used to show the plug-in configurations and load
status of plug-ins. Send menu command “PLGINF” in the Serial Command Win-
dow in EZConfig for Scanning. A sample of the output is shown:

Plugin Configurations:
[Format Plugin Configuration]

<HelloWorld.plugin>
[name]: HelloWorld
[company]: Plug-In Developer, Inc.
[licensed]: YES
[active]: YES
[majorrevision]: 5
[minorrevision]: 3
[build]: 37
[certificate]: 102148
[certificatetime]: 2009/08/10 15:00:05
[guid]: abcd1234
[filename]: HelloWorld.plugin
[mainroutineorder]: BEFORE
[bar codeinterceptmode]: YES
[entrydatastate]: MODIFIED
[chainonexit]: CHAINIFFAILURE
[loadstatus]: SUCCESS

<sample.plugin>
[name]: FormatPlugin
[company]: Plug-In Developer, Inc.
[licensed]: YES
[active]: YES
[majorrevision]: 5
[minorrevision]: 3
[build]: 37
[certificate]: 102148
[certificatetime]: 2009/08/10 15:00:05
[guid]: abcd1234
[filename]: sample.plugin
[mainroutineorder]: BEFORE
[bar codeinterceptmode]: YES
[entrydatastate]: MODIFIED
[chainonexit]: CHAINIFFAILURE
[loadstatus]: SUCCESS

Some of the fields in the configuration file may be updated to conform to scanner
settings the first time the plug-in is loaded.
46 Total Freedom 3.0 User Guide

Load Status of Plug-ins
The “loadstatus” field in the configuration file is updated every time after a plug-in
is loaded. It indicates success or the reason for failure if the plug-in cannot be
loaded. This field may display:

Plug-in Relevant Menu Settings
Plug-in relevant menu settings are used to help develop and debug plug-ins:

SUCCESS The plug-in is loaded successfully

INACTIVE The plug-in is inactive

UNLICENSED The plug-in is unlicensed

NORESOURCE 1. Short of resources to load the plug-in

2. Cannot open plug-in file (file not found)

3. Not enough memory

4. File operation error when loading plug-in

5. Main routine not found in the plug-in

6. Helper not found in the plug-in

CORRUPT 1. Plug-in is corrupt

2. Unknown symbol

3. Bad relocation

4. Relocation out of range

5. Unknown relocation

CORRUPTCONFIGENTRY Configuration file is corrupt

NOPLUGINDEFINED No definition in configuration entry

PLUGINTERMINATE Error occurred during plug-in initialization

PLGIPE Fully visible boolean setting to enable / disable image processing
class plug-ins (1 for enable, 0 for disable).

PLGDCE Fully visible boolean setting to enable / disable decode class
plug-ins (1 for enable, 0 for disable).

PLGFOE Fully visible boolean setting to enable / disable format class plug-
ins (1 for enable, 0 for disable).

PLGOLE Fully visible boolean setting to enable / disable offline class plug-
ins (1 for enable, 0 for disable).

PLGDBG Fully visible boolean setting to enable / disable plug-ins to output
debug information (1 for enable, 0 for disable).
Total Freedom 3.0 User Guide 47

PLGIPN Fully visible string setting containing the name of the image
processing class configuration file. Default is null (no
configuration file).

PLGDCN Fully visible string setting containing the name of the decode
class configuration file. Default is null (no configuration file).

PLGFON Fully visible string setting containing the name of the format
class configuration file. Default is null (no configuration file).
To turn on FormatConf, enter the menu command:
“PLGFONFormatConf” and hard reboot the scanner. The
configuration file name should be a string consisting of ASCII
characters except ‘.’, ‘?’, ‘;’ and ‘!’ (these characters are reserved for
menu commands).

PLGOLN Fully visible string setting containing the name of the offline class
configuration file. Default is null (no configuration file).

PLGINF The plug-in configuration files may be reported to the host via the
hidden PLGINF menu command.

PLGDEL Delete the plug-in file or configuration file from the scanner.

PLGDIR List all the plug-in files and configuration files in the scanner.

PLGREA Read the content of a configuration file. (Do not use this menu
command to output a plug-in file.)

PLGREN Rename a plug-in file or configuration file:

PLGRENOldFileName:NewFileName

The old name and new name are separated by a colon.

PLGCPY Copy a plug-in file or a configuration file:

PLGCPYOrgFileName:DstFileName

OrgFileName is the original file name and DstFileName is the
destination file name. The original name and destination name
are separated by a colon.

PLGDLA Delete all plug-in files and configuration files in the scanner.
48 Total Freedom 3.0 User Guide

™

Honeywell
855 S. Mint St.
Charlotte, NC 28202

sps.honeywell.com

TF3-PD-EN-UG-01 Rev A
 4/23

https://www.sps.honeywell.com

	Total Freedom 3.0 User Guide
	Disclaimer, Trademarks, Patents
	Table of Contents
	Customer Support
	Technical Assistance

	Contents and Environment
	Package Contents
	MIPS™ ELF Toolchain for Linux® PC
	Plug-in Samples
	EZConfig for Scanning

	System Requirements
	Plug-in Development Environment
	Installing MIPS Toolchain for Linux PC

	Plug-In Development
	Header Files
	Plug-in Chain
	Build Bin Files for Every Plug-in
	Create a Plug-in Chain Configuration File
	Create MOCF File that Contains Multiple Plug-ins

	Define Plug-in Information
	Declare Plug-in
	Export Symbols for Other Plug-ins
	Define Plug-in Entry Function and Exit Function
	Makefile
	Build Plug-in
	Plug-in Configuration File
	Configurations of System Routines
	Memory and Storage for Plug-ins
	File Size of Plug-in
	Stack Size
	Global Variables
	Heap

	Create an MOCF file with Plug-ins
	Create an MOCF File that Contains a Single File
	Create an MOCF File that Contains Multiple Files
	Add Custom Defaults File to Plug-in MOCF file

	Download Plug-in and Configuration File

	Configuration File Samples
	FormatPlugin_1 and FormatPlugin_2
	Call the System Routine
	Disable Calling the System Routine
	System Routine at End of Plug-In Sequence

	Generate Menu barcodes
	Normal
	Lock-Mode

	Format Plug-In API
	DataEdit
	ProcessingBarcode
	CheckLicense
	Register APIs
	Control the Scanner’s Beeper and LED
	Play Audio Files

	Decode Plug-In API
	Logic of Calling Decode Plug-ins
	Decode Plug-in APIs
	Decode
	ProcessingBarcode
	CheckLicense
	CheckVersion
	Register APIs

	Offline Plug-In API
	Logic of Calling Offline Plug-ins
	Offline Plug-in APIs
	ProcessingEvent
	ProcessingBarcode
	CheckLicense
	CheckVersion
	Process Manifest Plug-in APIs
	Register APIs

	Offline Timer
	Play Audio in Plug-in

	Diagnostics
	Boot Mode to Disable Loading Plug-in
	View Plug-in Configuration
	Load Status of Plug-ins
	Plug-in Relevant Menu Settings

	TF3-PD-EN-UG-01 Rev A, 4/23

